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Newton introduced the concept of momentum to measure the
quantitative effect of force.

The total quantity of motion possessed by a moving body is known
as the momentum of the body. It is the product of the mass and velocity

of a body. It is denoted by p


. p


 = m v


Since mass m is always positive therefore the direction of p


 is the

same as that of v


.

In magnitude, | p


| = m | v


 | or p = mv

Since velocity is a vector and mass is a scalar therefore momentum

is a vector. Again, p


 has same direction as that of v


 because m is
always positive.

The cgs and SI units of momentum are g cm s–1 and kg m s–1

respectively.

The dimensional formula of momentum is [MLT –1].

(i ) When m is constant, p  v. This is shown in Fig. 3.1.

(ii ) When v is constant, p  m. This is shown in Fig. 3.2.

(iii ) When p is constant, then 
1 .v
m

  This is shown in Fig. 3.3.

P11CH3 
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m = constant

p

 = constant

m

p
p = constant

m

                               Fig. 3.1            Fig. 3.2      Fig. 3.3

Conceptual Problem 1. A car and a scooter are travelling with the
same speed. Which of the two has greater momentum?

Ans. Let M and m be the masses of the car and scooter respectively.
Let pc and ps be their respective momenta. Let v be the speed of both
scooter and car.

Now, pc = Mv and ps = mv,
c

s

p
p  = 

Mv
mv  = 

M
m

    M > m  pc > ps

So, the momentum of the car is greater than the momentum of the
scooter.

Conceptual Problem 2. A car and a scooter have the same
momentum. Which of the two has greater speed?

Ans. In this case,  p = Mvc = mvs

where vc and vs are the speeds of the car and scooter respectively.

Now, c

s

v
v

 = 
M
m .  m < M  vc < vs

So, the speed of the car is less than the speed of the scooter.

Conceptual Problem 3. Establish a general relation between
momentum p and kinetic energy Ek.

Ans. p = mv ; p2 = m2v2

or p2 = 2 m 
1
2 mv2 = 2m Ek   or  p = 2 Ekm
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(i) Statement. The time rate of change of momentum of a body
is directly proportional to the impressed force and takes place in
the direction of the force.

(ii) Explanation of Newton’s second law. The statement can be
divided into the following two parts:

(a) The time rate of change of momentum of a body is proportional to
the impressed force.

 A force acting on a body produces a certain change in the
momentum of the body. When the given force is doubled, the ‘change
in momentum’ of the body is also doubled. So, as the applied force is
increased, the rate of change of momentum of the body is also increased.

(b) The change of momentum takes place in the direction of the force.
Consider a body to be at rest. When a force is applied on this body,

the body will begin to move in the direction of the force. If a force is
applied on a moving body in the direction of motion of the body, then
there is an increase in the momentum of the body. However, if the
force is applied on a moving body in a direction opposite to the direction
of motion of the body, then there is a decrease in the momentum of the
body.

(iii) Formula for force. Let a constant external force F


 acting on a

body change its momentum from p


 to p


 + dp


 in time interval dt.

Then, the time rate of change of linear momentum is dp
dt



.

According to Newton’s second law of motion,

Fdp
dt




 or    F dp
dt




 or F dpk
dt






Here k is a constant of proportionality. The value of k depends upon
the units selected for the measurement of force. In both SI and cgs
system, the unit of force is so chosen that k = 1.

 F dp
dt





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The effectiveness of a force in producing motion depends not only
upon the magnitude of the force but also on the time for which the
force acts. When a large force acts for an extremely short duration,
neither the magnitude of the force nor the time for which it acts is
important. In such a case, the total effect of force is measured. The
total effect of force is called impulse.  It may also be defined as a
measure of the action of force. It is a vector quantity and is denoted by

J


. It is the product of force and the time for which the force acts.

Suppose a force F


 acts for a short time dt. The impulse of this force

is given by, d J


 = F


dt

If we consider a finite interval of time from t1 to t2, then the impulse
is given by,

J


= F
z dt

t

t

1

2

The right hand side of the above equation represents the impulse
of varying force.

J


= F


dt
t

t

1

2z  = F


 t
t

tL
NM

O
QP

1

2

 = F


(t2 – t1)

or J


= F


t where  t = t2 – t1
So, the impulse of a constant force F



 is equal to the product of the
force and time interval t for which the force acts.

The direction of J


 is the same as the direction of F


.

In cgs system, the unit of impulse is dyne second or g cm s–1.

In SI, it is measured in newton second or kg m s–1.

The dimensional formula of impulse is [MLT–1].

Impulse is measured by the total change in momentum that the
force produces in a given time.
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According to Newton’s second law of motion, F


 = dp
dt



where p


 is the momentum of body at any time t and F


 is the applied
force at that time.

dp


= F


dt

Integrating, 2

1

p

p
dp


  = 
0

F
t 

 dt

where 1p


 is the momentum at t = 0 and 2p


 is the momentum at time t.

L
NM

O
QPp p

p

1

2

= 
0

F
t 

 dt or

p2  – 


p1  = F

z dt
t

0

or
0

F
t

dt


 = 2p


 – 1p


...(1)

So, the impulse of a varying force is equal to the change in momentum
produced by the force.

If the applied force F


 is constant, then from equation (1),

F


 
0

t
dt = 2p



 – 1p


or F


 t
tL

NM
O
QP0

 = 2p


– 1p


or F


(t – 0) = 2p


 – 1p


or F


t = 2p


 – 1p


Thus, the impulse of a constant force is equal to the change of
momentum.

In the case of positive impulse acting on a body, there is an algebraic
increase in the momentum of the body. If the impulse is zero, then
there is no change in the momentum. In the case of negative impulse,
there is a decrease in the momentum.

These are based on the fact that if the total change in momentum
takes place in a very short time, then the force is large. If the change in
momentum takes place over a longer interval of time, then the force is
small.
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If two forces 1F


 and 2F


 act on a body to produce the same impulse,
then their respective times of application t1 and t2 should be such that

1F


 t1 = 2F


 t2
Following are the practical applications of impulse.
1. While catching a fast moving cricket ball, a player lowers his

hands. In this way, the time of catch increases and the force decreases.
So, the player has to apply a less average force. Consequently, the ball
will also apply only a small force (reaction) on the hands. In this way,
the player will not hurt his hands.

2. Automobiles are provided with spring systems. When the
automobile bumps over an uneven road, it receives a jerk. The spring
increases the time of the jerk, thereby reducing the force. This
minimises the damage to the automobile. [For the same reason, buffers
are provided between the bogies of a train.]

3. China plates are wrapped in paper or straw pieces while
packing. If, during transportation, the package gets a jerk, the time of
blow will be increased. This will reduce the force of blow. In this way,
the china plates will be saved from damage.

4. It is difficult to catch a cricket ball as compared to a tennis ball
moving with the same velocity. This is due to the fact that the cricket
ball is heavier than a tennis ball. The change in momentum is more in
the case of a cricket ball than in the case of a tennis ball. As a result,
more force is required to be applied in the case of a cricket ball.

5. When a moving vehicle strikes
against a wall, a large amount of force acts
on the vehicle. This is because the change
in momentum is very large and is brought
about in a very short interval of time. So, a
large amount of force acts on the vehicle and
the vehicle is damaged.

Example 1. Force-time graph for a body
is shown in Fig. 3.4. What is the velocity of
the body at the end of 11 second ? Mass of
the body is 7 kg. Assume the body to be
starting from rest. Fig. 3.4
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Solution. Area ABHO = 5  5 = 25 units
Area BDFH = 5(11 – 5) = 30 units

Area BCD = 
1
2   6  5 = 15 units

Total area under the curve = (25 + 30 + 15) units = 70 units
Since the area under F-t curve gives impulse i.e., change in momentum,

 mv – 0 = 70    or  v  = 
70
m

 = 
70
7

 m s–1 = 10 m s–1

Example 2.  A ball moving with a momentum of 5 kg m s–1 strikes
against a wall at an angle of 45° and is reflected at the same angle.
Calculate the change in momentum (in magnitude).

Solution. Let 1p


 and 2p


 be the
initial and final momenta respectively
of the ball.

Change in momentum = 2p


 – 1p


= 2p


 + (– 1p


) = AB


From the Fig. 3.5,

AB = 2 2
1 2p p

= 2 25 5  kg m s–1

or AB = 50  kg m s–1 = 7.07 kg m s–1

Forces acting on a body originate in other bodies that make up its
environment. This property of forces was first stated by Newton in his
third law of motion:

“To every action, there is always an equal (in magnitude) and
opposite (in direction) reaction.”

This law may also be stated as under:
“Action and reaction are equal in magnitude, opposite in

direction and act on different bodies.”

Fig. 3.5
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Consider interaction (action and reaction)

between two bodies A and B. Let BAF


be the

force exerted by A on B and ABF


the force
exerted by B on A (Fig. 3.6). Then, according
to Newton’s third law of motion,

BAF


 = – ABF


It is clear from this equation that the two forces are equal in
magnitude but opposite in direction. These forces of action and reaction
act along the line joining the centres of two bodies.

One of the two forces involved in the interaction between two bodies
may be called ‘action’ force. The other force will be called the ‘reaction’
force. The forces of action and reaction constitute a mutual simultaneous
interaction. It cannot be said that action is the cause of reaction or
reaction is the effect of action.

Newton’s third law of motion leads us to a very interesting fact about
forces. It is that the forces always exist in pairs. They never exist singly.

A collision is said to take place when either two bodies physically
collide against each other or when the path of one body is changed by
the influence of the other body.

As a result of collision, the momentum and kinetic energy of the
interacting bodies change. The forces involved in a collision are action-
reaction forces, i.e., the internal forces of the system. So, the total
momentum is conserved. Also, the total energy is conserved.

Elastic Collision. A collision is said to be an elastic collision if both
the kinetic energy and momentum are conserved in the collision.

During collision, the bodies are deformed. However, they regain
their original shape completely if the collision is elastic. The mechanical
energy is not converted into any other form of energy. In an elastic
collision, the forces of interaction are conservative in nature.

Fig. 3.6. Newton’s third law
of motion
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Inelastic Collision. A collision is said to be an inelastic collision if
the kinetic energy is not conserved in the collision. However the momentum
is conserved.

The kinetic energy lost in the collision appears in the form of heat
energy, sound energy, light energy, etc. The forces of interaction in an
inelastic collision are non-conservative in nature.

If a ball is dropped from a certain height and the ball is unable to
rise completely to its original height, then it would mean that ball has
lost some kinetic energy (which would appear as heat energy). This
would mean that collision is an inelastic collision.

(i ) Kinetic energy is not conserved. (ii) Total energy is conserved.
(iii) Momentum is conserved. (iv) Some or all of the forces involved
in the collision are non-conservative. (v ) A part of the mechanical
energy is converted into heat, light, sound, etc.

One-dimensional elastic collision  is that elastic collision in which
the colliding bodies move along the same straight line path before and
after the collision.

Consider two bodies A and B of masses m1 and m2 respectively
moving along the same straight line in the same direction [Fig. 3.7]. Let
v i1



 and v i2



 be their respective velocities such that | v i1



| > |v i2



|.

v1i v2i v1f v2f

A AB B

m1 m1m2 m2m1 m2

A B

BEFORE COLLISION DURING COLLISION AFTER COLLISION

 

Fig. 3.7. One-dimensional elastic collision

The two bodies will collide after some time.
During collision, the bodies will be deformed in the region of contact.

So, a part of the kinetic energy will be converted into potential energy.
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The bodies will regain their original shape due to elasticity. The potential
energy will be reconverted into kinetic energy. The bodies will separate
and continue to move along the same straight line in the same direction
but with different velocities.

In an elastic collision, the kinetic energy onservation does not
hold at every instant of ollision. It holds after the collision is over.
Total linear momentum is conserved both in lastic and inelastic
collisions.
Total linear momentum is conserved at each instant of elastic and
inelastic collisions.
 Total energy is conserved in all collisions.

Let * 1fv


 and 2 fv


be the velocities of A and B respectively after the

collision.

Applying the law of conservation of momentum,

total momentum before collision = total momentum after collision

 m1v1i + m2v2i = m1v1f + m2v2f  (in magnitude)

or m1 (v1i – v1f) = m2 (v2f – v2i) ...(1)

Since the collision is elastic therefore kinetic energy will be
conserved.

 Kinetic energy before collision = Kinetic energy after collision


2 2

1 1 2 2
1 1
2 2i im v m v = 2 2

1 1 2 2
1 1
2 2f fm v m v

or 2 2
1 1 2 2i im v m v  = 2 2

1 1 2 2f fm v m v

or 2 2
1 1 1( )i fm v v = 2 2

2 2 2( )f im v v

or 1 1 1 1 1( )( )i f i fm v v v v  = 2 2 2 2 2( )( )f i f im v v v v  ...(2)

Dividing (2) by (1), we get  1 1 2 2i f f iv v v v  

or 1 2 2 1i i f fv v v v   ...(3)

*The velocity v f2


 has to be greater than velocity v f1


 because otherwise the two
colliding bodies cannot separate.
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*(v1i – v2i) is the magnitude of the relative velocity of A w.r.t. B.
**(v2f – v1f) is the magnitude of relative velocity of B w.r.t. A. It may be
noted that the direction of relative velocity is reversed after the collision.

Relative velocity of A w.r.t. B before collision
= Relative velocity of B w.r.t. A after collision

or       Relative velocity of approach = Relative velocity of separation
In one-dimensional elastic collision, the relative velocity of approach

before collision is equal to the relative velocity of separation after the
collision.

From equation (3), v2f = v1i – v2i + v1f

From equation (1), m1(v1i – v1f ) = m2(v1i – v2i + v1f – v2i)

or 1 1 1 1i fm v m v  = 2 1 2 12i fm v m v  + 2 1 fm v

or – 1 1 2 1f fm v m v  = – m1v1i + m2v1

 

i – 2m2v2i

or (m1 + m2) v1f = (m1 – m2) v1i + 2m2v2i

or v1f = 1 2

1 2

m m
m m




v1i + 2

1 2

2m
m m

v2i  ...(4)

Again, from equation (3),   v1f = v2f  – v1i + v2i

Substituting this value in equation (1) and simplifying, we get

                   2 1 1
2 2 1

1 2 1 2

2
f i i

m m mv v v
m m m m


 

 
...(5)

Equations (4) and (5) give the final velocities of the colliding bodies
in terms of their initial velocities.

In a nuclear reactor, the neutrons are produced from the fission of
Uranium. These neutrons are very fast. So, they cannot be used to
produce more fission. Thus, they have to be quickly slowed down. This
is done by making them collide against a target. If the targets are
electrons, then the speed of neutrons will remain practically unchanged.

* ( 1iv


 – 2iv


) is the relative velocity of approach.

** (v f2


 – v f1


) is the relative velocity of separation.
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This is because neutrons are massive as compared to electrons. If the
targets are lead nuclei, then the neutrons merely bounce back with
nearly the same speed. This is because neutrons are much lighter
than lead nuclei.

If the targets are protons, then the neutrons are sufficiently slowed
down because the masses of two colliding particles are comparable.

The protons are available in water. So, water can be used as a
moderator in a nuclear reactor. But neutrons tend to constitute stable
nuclei with protons. So, instead of water, we use heavy water (D2O) as
moderator. The nucleus of deuterium contains one neutron and one
proton only.

Example 3. Two bodies of masses 50 g and 30 g moving in the same
direction, along the same straight line with velocities 50 cm s–1 and 30
cm s–1 respectively suffer one-dimensional elastic collision. Calculate
their velocities after the collision.
Solution. Mass, m1 = 50 g ; Mass, m2 = 30 g ;

Velocity, v1i = 50 cm s–1 ; Velocity, v2i = 30 cm s–1

v1f = ?, v2f = ?

                      
1 2 2

1 1 2
1 2 1 2

2
f i i

m m mv v
m m m m


 

 

= 
150 30 2 3050 30 cms

50 30 50 30
  

   
  

= 35 cm s–1

Again,
2 1 1

2 2 1
1 2 1 2

2
f i i

m m mv v v
m m m m


 

 

= 
130 50 2 5030 50 cms

50 30 50 30
  

   
  

= 55 cm s–1

Example 4. A body A of mass 2 kg moving with a velocity of
25 m s–1 in the east direction collides elastically with another body B of
mass 3 kg moving with velocity of 15 m s–1 westwards. Calculate the
velocity of each ball after the collision.
Solution. m1 = 2 kg, v1i = 25 m s–1, m2 = 3 kg ;

*v2i = – 15 m s–1, v1f = ?, v2f = ?

* The initial velocity of the body B is in a direction opposite to that of the initial
velocity of body A.
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                      v1f =
1 2

1
1 2

i
m m v
m m




 + 

2
2

1 2

2
i

m v
m m

= 12 3 2 325 15 ms
2 3 2 3

  
    

  
= – 23 m s–1

v2f =
2 1

2
1 2

i
m m v
m m




 + 

1
1

1 2

2
i

m v
m m

=
13 2 2 215 25 ms

3 2 3 2
  

    
  

= 17 m s–1 

The ratio of relative speed of separation after collision and the
relative speed of approach before collision is a constant. This constant
is called coefficient of restitution  or coefficient of resilience. It is
denoted by e. It is a measure of the degree of elasticity of a collision. Its
value depends upon the nature of the colliding bodies.

The coefficient of restitution is defined as the ratio of the magnitude
of relative velocity of separation after collision to the magnitude of relative
velocity of approach before collision.

e = 
2 1

1 2

| |

| |

f f

i i

v v

v v









(i ) In a perfectly elastic collision, the relative velocity of separation
is equal to the relative velocity of approach.

 e = 1

Note that there is no loss of kinetic energy. A body dropped from a
certain height shall rebound to the same height.

(ii) In a perfectly inelastic collision, the bodies stick together after
the collision. The relative velocity of separation is zero.

 e = 0
(iii) In general, the bodies are neither perfectly elastic nor perfectly

inelastic. In that case,
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velocity of separation = e(velocity of approach), where 0 < e < 1.
For two lead balls, e = 0.20 and for the glass balls, e = 0.95.
(iv ) If e > 1, then the collision is superelastic collision. [An example

of superelastic collision is that of a cracker which is forcefully struck
against the ground.]

A collision is said to be one-dimensional inelastic collision if the
momentum is conserved with some loss of kinetic energy and the colliding
bodies continue to move along the same straight line path before and
after the collision.

Consider two bodies A and B of masses m1 and m2 moving, in the

same direction, along the same straight line path with velocities 1iv


and 2iv


 respectively such that | 1iv


| > | 2iv


|. The two bodies A and B

undergo head-on collision. After the collision, they continue to move

along the same straight line with velocities 1fv


 and 2 fv


respectively
without any change in direction.

Using conservation of momentum,
m1v1i + m2v2i = m1v1f + m2v2f ...(1)

If e be the coefficient of restitution, then

e = 
2 1

1 2

f f

i i

v v
v v





or v2f = v1f + e(v1i – v2i) ...(2)
Substituting the value of v2f in equation (1),

m1v1i + m2v2i = m1v1f + m2[v1f + e(v1i – v2i)]
or (m1 + m2) v1f = (m1 – em2) v1i + (1 + e) m2v2i

or v1f = 1 2

1 2

m em
m m




v1i + 

2

1 2

(1 )e m
m m



v2i ...(3)

Similarly, v2f = 2 1

1 2

m em
m m




v2i + 

1

1 2

(1 )e m
m m



v1i ...(4)
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Consider a system of n particles of masses m1, m2, ..., mn and

velocities 1v


, 2v


, ......, nv


 respectively. The particles may be interacting
and have external forces acting on them. The linear momentum of the

first particle is m1 1v


, of the second particle is m2 2v


 and so on.

For the system of n particles, the linear momentum of the system is
defined to be the vector sum of momenta of all individual particles of
the system.

P


 = 1p


 + 2p


 + ... + np


 = m1 1v


 + m2 2v


 + ...... + mn nv


But m1 1v


 + m2 2v


 + ...... + mn nv


 = M V


 P


 = M V


...(1)

Thus, the total momentum of a system of particles is equal to the
product of the total mass of the system and the velocity of its centre of
mass.

Differentiating Eq. (1) with respect to time,

Pd
dt



= M Vd
dt



 = M A


But M A


= .Fext



where .Fext


 represents the sum of all external forces acting on the

particles of the system.


Pd

dt



= .Fext


...(2)

This is the statement of Newton’s second law extended to a system
of particles.

Suppose now, that the sum of external forces acting on a system of
particles is zero. Then from Eq. (2)
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Pd
dt



 = 0 or P


 = constant ...(3)

Thus, when the total external force acting on a system of particles
is zero, the total linear momentum of the system is constant. This is
the law of conservation of the total linear momentum of a system of
particles.

Rewriting Eq. (3),

M V


 = constant

or V


 = constant ( M is constant.)
Thus, if the total external force acting on the system is zero, the

centre of mass moves with a constant velocity i.e., moves uniformly in a
straight line like a free particle. This is Newton’s first law of motion.

Following are examples of motion of centre of mass:
1. A projectile, following the usual parabolic trajectory, explodes

into fragments midway in air. The forces leading to the explosion are
internal forces. They contribute nothing to the motion of the centre of
mass. The total external force, namely, the force of gravity acting on the
body, is the same before and after the explosion. The centre of mass
under the influence of the external force continues, therefore, along
the same parabolic trajectory as it would have followed if there were no
explosion.

In this illustration, the forces
of explosion are all internal forces.
These forces are exerted by part
of the system on other parts of the
system. These forces may change
the momenta of all the individual
fragments from the values they
had when they made up the
projectile. But the internal forces
cannot change the total vector
momentum of the system. It is

O

Y

Xx1

Parabolic path
of the projectile Explosion

Path of the CM
of fragments

Fig. 3.8. The centre of mass of the fragments
of the projectile continues along the same
parabolic path which it would have followed if
there were no explosion
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only the external force which can change the total momentum of the
system. In the given problem, the only external force is that due to
gravity. The change in the total momentum of the system due to gravity
is the same whether the shell explodes or not.

2. Consider the Earth-Moon system. Both
the Earth and the Moon move in circles about
their centre of mass, always being on opposite
sides of it. The centre of mass moves along an
elliptical path around the Sun. The forces of
attraction between Earth and Moon are internal
to the Earth-Moon system. On the other hand,
the Sun’s attraction of both Earth and Moon are
external forces.

After having considered a system of particles which moves under the
influence of internal and external forces, we can now take up the
rotational motion of rigid body. A rigid body is a body with a perfectly
definite and unchanging shape. The geometrical shape and size of rigid
body do not undergo any change during motion of rigid body. A rigid
body may be regarded as an assembly of point masses. The mutual
distances among different point masses do not change during the motion
of the rigid body.

The centre of mass of a rigid body is a point whose position is
fixed with respect to the body as a whole. This point may or may not
be within the body. The position of the centre of mass of a rigid body
depends upon the following two factors.

(i ) shape of the body (ii ) distribution of mass in the body.
It is easy to locate the centre of mass of a symmetrical rigid body

having uniform distribution of mass. In most of such cases, the centre
of mass is at the geometrical centre.

E

M
Centre
of mass

Sun

Fig. 3.9. Centre of mass
of Earth-Moon system
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Position of Centre of Mass of Some Regular Bodies

S. No.        Shape of body          Position of centre of mass

   1. Uniform rod Centre of rod

   2. Plane rectangular or Point of intersection of diagonals
square lamina

   3. Plane triangular lamina Point of intersection of the medians of
triangle

   4. Uniform circular ring Centre of ring

   5. Uniform circular disc Centre of disc

   6. Uniform solid sphere Centre of the solid sphere

   7. Uniform hollow sphere Centre of the hollow sphere

   8. Uniform hollow cylinder Midpoint of the axis of the hollow cylinder

   9. Uniform solid cylinder Midpoint of the axis of the solid
cylinder

(i) Statement. If the vector sum of the external forces acting on
a system is zero, then the total momentum of the system is
conserved i.e., remains constant.

The concept of conservation of momentum is particularly important
in situations in which we have two or more interacting bodies. The law
of conservation of momentum is a direct consequence of Newton’s third
law. This law does not depend on the detailed nature of the internal
forces that act between the members of the system.

For any system of particles, the forces that the particles of the
system exert on each other are called internal forces.
The forces exerted on any part of the system by some object
outside the system are called external forces.
A system is said to be isolated if the net external force acting
on the system is zero.
A system is said to be closed if no particles enter or leave the
system.
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For a closed, isolated system,

p


= constant ...(1)

 ip


= fp


...(2)

The total linear momentum at some initial time ti = total linear
momentum at some later time tf.

Equations (1) and (2) are vector equations. Each is equivalent to
three equations corresponding to the conservation of linear momentum
in three mutually perpendicular directions. Depending on the forces
acting on a system, linear momentum might be conserved in one or
two directions but not in all directions. If the component of the net external
force on a closed system is zero along an axis, then the component of
the linear momentum of the system along that axis cannot change.

(ii) Derivation of the law of conservation of momentum from
Newton’s second law of motion.

According to Newton’s second law of motion, the time rate of change
of momentum is equal to the applied force.

If the system is isolated, then F


 = 0.

In that case, d
dt

 ( p


) = 0

 p


 = constant

[Differential coefficient of an isolated constant is zero.]
This leads us to the following statement of the law of conservation

of momentum.
“In the absence of external forces, the total momentum of the system

is conserved”.
(iii) Derivation of the law of conservation of momentum from

Newton’s third law of motion.
Consider an isolated system consisting of two bodies A and B of

masses m1 and m2 respectively [Fig. 3.10]. Let the two bodies be moving
along a straight line in the same direction. Let their respective velocities

be 1iv


 and 2iv


 such that 1iv


 is greater than 2iv


. The two bodies will
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collide after some time. Let 1fv


 and 2 fv


be the velocities of A and B
respectively after the collision.

Fig. 3.10. One-dimensional collision

Before collision

Momentum of body A = m1 1fv


 ; Momentum of body B = m2 2iv


 Total momentum of system = m1 1iv


 + m2 2iv


After collision
Momentum of body A = m1 1fv



; Momentum of body B = m2 2 fv


 Total momentum of system = m1 1fv


 + m2 2 fv


Change in momentum of body A = m1 1fv


 – m1 1iv


Change in momentum of body B = m2 2 fv


– m2 2iv


During collision, the body A exerts an average force BAF


on body B.
According to Newton’s third law of motion, the body B will exert an

average force ABF


 on body A such that

BAF


 = – ABF


Let t be the duration of collision.

Then, impulse acting on B = BAF


t; Impulse acting on A = ABF


t

But impulse = change in momentum

 BAF


t = m2 2iv


 – m2 2 fv


 and ABF


t = m1 1fv


 – m1 1iv


But BAF


t = – ABF


 t

  m2 2 fv


– m2 2iv


= – (m1 1fv


 – m1 1iv


)

or m2 2 fv


+ m1 1fv


= m1 1iv


 + m2 2iv

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So, total momentum of system after collision is equal to the total
momentum of system before collision.

This leads to the following statement of the law of conservation of
momentum.

“The total vector sum of the momenta of bodies, in an isolated
system, along any straight line remains conserved and is
unchanged due to the mutual action and reaction between the
bodies in the system.”

This law is universal. It is true not only for collisions between
astronomical bodies but also for collisions between atomic particles.

(i ) Recoil of a Gun. Let the gun and the bullet in its barrel constitute
one isolated system.

To begin with, both the gun
and the bullet are at rest. So, the
momentum of the system, before
firing, is zero.

When the bullet is fired, it
moves in the forward direction
and the gun kicks backward.

Let, m = mass of bullet ; M = mass of gun ; v


 = velocity of bullet ;

V


 = velocity of gun.

Total momentum of system after firing = M V


 + mv


No external forces have acted on the system. So, law of conservation
of momentum can be applied.

 M V


 + mv


= 0 or M V


 = – mv


or  V


= – 
M
m

v


The negative sign shows that the velocity V


 of recoil is opposite to
the velocity of the bullet, i.e., if the bullet moves in the forward direction,
the gun moves in the backward direction.

Fig. 3.11. Recoil of gun
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The mass M of the gun is very large as compared to the mass m of
the bullet. So, the velocity of recoil is very small as compared to the
velocity of the bullet.

(ii ) Machine Gun firing
Bullets. Suppose a machine
gun mounted on a car is firing
n bullets in time t. Let m and
v


 be the mass and velocity
respectively of each bullet
[Fig. 3.12].

Total momentum in the
forward direction = n  mv



The reaction of this momentum will be in the backward direction.
This reaction will set the car in motion to the right. In order to hold the
car in position, the accelerator of the car shall have to be suitably
pressed. The applied force F



 should be such that

F


t = – nmv


  [Impulse = change of momentum]

(iii ) Explosion of a Bomb.  Suppose a bomb is at rest as shown in
Fig 3.13 (a). Its momentum will be zero. Let the bomb explode into five
fragments of masses m1, m2, m3, m4 and m5 [Fig. 3.13 (b)].

Let their respective velocities be 1v


, 
2v



, 3v


, 4v


 and 5v


. Then their

respective momenta will be given by

1p


 = m1 1v


, 2p


 = m2 2v


, 3p


 = m3 3v


, 4p


 = m4 4v


 and 5p


 = m5 5v


               

Fig. 3.13. Explosion of a bomb

Fig. 3.12. Machine gun firing bullets
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No external force has acted on the system. Therefore, the law of
conservation of momentum can be applied.

 Momentum after explosion = Momentum before explosion

 1p


 + 2p


 + 3p


 + 4p


 + 5p


 = 0


The sum of the five momenta vectors is zero. So, they can be
represented both in magnitude and direction by the five sides of a
closed polygon, all taken in the same order. This is shown in Fig. 3.13(c).

If the bomb explodes into two fragments of equal masses, then the
fragments will move with equal speeds in opposite directions.

Consider an isolated system consisting of n particles of masses m1,

m2, m3, ......, mn. Let 1v


, 2v


, 3v


, ......, nv


be their respective velocities.

The total linear momentum P


 of the system is equal to the vector
sum of the linear momenta of all the particles in the system.

Then P


 = m1 1v


 + m2 2v


 + m3 3v


 + ...... + mn nv


or P


 = (m1 + m2 + m3 + ...... + mn) 
1 1 2 2 3 3

1 2 3

.....
.....

n n

n

m v m v m v m v
m m m m

    
    

 
    

 

But m1 + m2 + m3 + ...... + mn = M (total mass of system)

and         1 1 2 2 3 3
. .

1 2 3

.....
V

.....
n n

c m
n

m v m v m v m v
m m m m

   
   


   

where . .Vc m



 is the velocity of centre of mass of the system.

 P


= M . .Vc m



Since the given system is isolated therefore no external force will
act. According to the law of conservation of momentum, the total

momentum P


 should be constant.
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 M . .Vc m



= constant.

CONCLUSION
When no external force acts on the system, the centre of mass of the
system has a constant velocity.

Example 5. A gun weighing 10 kg fires a bullet of 30 g with a velocity
of 330 m s–1. With what velocity does the gun recoil ? What is the combined
momentum of the gun and bullet before firing and after firing?
Solution. Mass of gun, M = 10 kg

Mass of bullet, m = 30 g = 0.03 kg
Velocity of bullet, v = 330 m s–1

Velocity of recoil, V = ?
In magnitude, momentum of gun = momentum of bullet

 MV = mv or V = 
M

mv

 V = 
0.03 330

10


 m s–1  = 0.99 m s–1

Combined momentum of gun and bullet before firing is zero. Since
no external force has acted therefore momentum must be conserved.
So, the combined momentum of gun and bullet after firing is also zero.

Example 6. A hunter has a machine gun that can fire 50 g bullets with
a velocity of 900 m s–1. A 40 kg tiger springs at him with a velocity of
10 m s–1. How many bullets must the hunter fire into the tiger in order to
stop him in his track?

Solution.
Mass of bullet, m = 50 g = 0.05 kg
Velocity of bullet, v = 900 m s–1

Mass of tiger, M = 40 kg
Velocity of tiger, V = 10 m s–1

Let n be the number of bullets required to be pumped into the tiger
to stop him in his track.

If the bullets and the tiger are supposed to constitute one isolated
system, then the magnitude of the momentum of n bullets should be
equal to the magnitude of momentum of the tiger.
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 n  m v = MV or n = 
MV
mv

 n = 
40 10

0.05 900



 = 8.89  9 

(i) Moment of inertia of a rigid body about a fixed axis is defined
as the sum of the products of the masses of all the particles constituting
the body and the squares of their respective distances from the axis of
rotation. It is a scalar quantity.

Let YY be the axis about which the rigid
body is rotating [Fig. 3.14]. Let the body be
composed of n particles of masses m1, m2, ......,
mn. Let r1, r2, ......, rn be their respective
distances from the axis of rotation. The
moment of inertia of the rigid body about the
given axis YY is given by

   I = m1r1
2 + m2r2

2 + ...... + mnrn
2 = 

2
1 1

1

n

i
m r





(ii) In cgs system, the unit of moment of
inertia is g cm2. In SI, moment of inertia is measured in kg m2.

(iii) Moment of inertia depends on the following factors:
1. Mass of the body.

2. Position of the axis of rotation.

3. Distribution of mass about the axis of rotation.

(a) The rotational analogue of momentum is moment of momentum.
It is also referred to as angular momentum. This quantity is a measure
of the twisting or turning effect associated with the momentum of the
particle.

Fig. 3.14. Moment of inertia
of a rigid body
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The angular momentum (or moment of momentum) about an axis
of rotation is a vector quantity, whose magnitude is equal to the product
of the magnitude of momentum and the perpendicular distance of the
line of action of momentum from the axis of rotation and its direction is
perpendicular to the plane containing the momentum and the
perpendicular distance.

Fig. 3.15 shows a particle having

linear momentum p


. Its position vector

with reference to point O is r


. The
perpendicular distance of the line of
action of momentum from O is d. The
angular momentum of the particle about
an axis passing through O and
perpendicular to the plane of the paper
is given by:

L = pd
The cgs and SI units of L are g cm2 s–1 and kg m2 s–1 respectively. Its

dimensional formula is [ML2T–1].
(b) Angular Momentum

in Vector Notation. Fig. 3.16

shows position vector r


 and

momentum p


 of a particle P
in XOY plane. The angular
momentum of the particle P
with respect to the origin O is
given by:

                 L


 = r


 × p


The direction of L


 is
obtained by applying the
right-hand rule for the vector product of two vectors. In this case, L



acts along OZ.
The angular momentum is taken as positive for anti-clockwise

rotation and negative for clockwise rotation.

Fig. 3.15

Fig. 3.16
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The magnitude of L


 is given by, L = rp sin  ...(1)

where r is the magnitude of the position vector r


 i.e., the length OP, p

is the magnitude of momentum p


 and  is the angle between r


 and

p


 as shown.

Now, sin  = 
d
r  or d = r sin 

From eqn. (1), L = p (r sin ) = pr

 = pd

Again, L = r (p sin ) = rp

 = rp



 (i) If r = 0, then L = 0. A particle
at O has zero angular momentum
about O.

(ii) If  = 0° or 180°, then sin  = 0.
          L = rp sin  = 0
In this case, the line of action of

the momentum passes through the
point O. Thus, if the line of action of
momentum passes through point O,
the angular momentum is zero.

(iii) If  = 90°, then sin  = sin
90° = 1 (max. value). So, L is
maximum.

Lmax. = rp

We know that, L


 = r


  p


Differentiating both sides w.r.t. t, we get

Ld
dt



= 
d
dt  ( r


 × p



) =  r


 × +dp dr
dt dt

 

 × p


or Ld
dt



= r


 × 
d p
dt



 + v


 × p


Fig. 3.17
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or                    Ld
dt



  = r


 × d p
dt



  [  v


 × p


 = v


  mv


 = m(v


 × v


) =  0]

According to Newton’s second law of motion, d p
dt



 = F



Ld

dt



= r


 × F


or
Ld

dt



 = 


t ...(1)

So, the time rate of change of the angular momentum of a particle is
equal to the torque acting on it. This result is the rotational analogue of
the statement—“The time rate of change of the linear momentum of a
particle is equal to the force acting on it.”

Like all vector equations, equation (1) is equivalent to three scalar

equations, namely, tx = 
Lxd
dt , ty = 

Lyd
dt

and tz = 
Lzd
dt

So, the x-component of the applied torque is given by x-component
of the change with time of the angular momentum. Similar results
hold for the y and z-directions.

The total angular momentum of a system of particles about a given
point is the vector sum of the angular momenta of individual particles
about the given point. For a system of n particles,

L


= 1L


 + 2L


 + ...... + Ln


 = 

1
L

n

i
i







The angular momentum of the ith particle is given by

Li


= ir


 × ip


where ir


 is the position vector of the ith particle with respect to the

given origin and ip


 (= mi iv


) is the linear momentum of the ith particle.

Now, L


= 
1 1
L

n n

i i i
i i

  

 

  
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This is a generalisation of the definition of angular momentum for a
single particle to a system of particles.

Now,
Ld

dt



= 
d
dt

 ( Li


) = 

1 1

Ln n
i

ii i

d
dt 






t 

where i

t  is the torque acting on the ith particle;

A rigid body is said to be in mechanical equilibrium if both its
linear momentum and angular momentum are not changing with
time, or equivalently the body has neither linear acceleration nor
angular acceleration.

A rigid body such as a chair, a bridge or building is said to be in
equilibrium if both the linear momentum and the angular momentum
of the rigid body have a constant value. When a rigid body is in
equilibrium, the linear acceleration of its centre of mass is zero. Also,
the angular acceleration of the rigid body about any fixed axis in the
reference frame is zero.

For the equilibrium of a rigid body, it is not necessary that the rigid
body is at rest. However, if the rigid body is at rest, then the equilibrium
of the rigid body is called static equilibrium.

(i) First Condition for Equilibrium.  The translational motion of
the centre of mass of a rigid body is governed by the following equation :

 .Fext
 = 

d
dt

( p


)

A rigid body is said to be in translational equilibrium if it remains
at rest or moves with a constant velocity in a particular direction.

Here  .Fext
  is the vector sum of all the external forces that act on

the rigid body.

For equilibrium, p


 must have a constant value.  
d
dt

( p


) = 0

  .Fext
 = 0
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This vector equation is equivalent to three scalar equations:

                          
1

F 0
n

ix
i 

 , 
1

F 0
n

iy
i 

 , 
1

F 0
n

iz
i 

 ...(1)

T h is lea d s u s to  the first condition for the equilibrium of rigid
bodies.

“The vector sum of all the external forces acting on the rigid
body must be zero”.

(ii) Second Condition for Equilibrium. The rotational motion of a
rigid body is governed by the following equation:

 .ext

t = Ld

dt



Here  .ext

t  represents the vector sum of all the external torques

that act on the body.

For equilibrium, L


 must have a constant value.  
d
dt

 ( L


) = 0

  .ext

t = 0

This vector equation can be written as three scalar equations:

                            
1

0
n

ix
i 

t  , 
1

0
n

iy
i 

t  , 
1

0
n

iz
i 

t  ...(2)

This leads us to the second condition for the equilibrium of rigid
bodies.

“The vector sum of all the external torques acting on the rigid
body must be zero.”

1. The angular velocity of a planet around the Sun increases
when it comes near the Sun.

When a  planet revolving around the Sun in an elliptical orbit comes
near the Sun, the moment of inertia of the planet about the Sun
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decreases. In order to conserve angular momentum, the angular velocity
shall increase. Similarly, when the planet is away from the Sun, there
will be a decrease in the angular velocity.

2. The speed of the inner layers of the whirlwind in a tornado is
alarmingly high.

In a tornado, the moment of inertia of air will go on decreasing as the
air moves towards the centre. This will
be accompanied by an increase in
angular velocity such that the angular
momentum is conserved.

3. A diver jumping from a spring
board performs somersaults
in air.

When a diver jumps from spring
board, he curls his body by rolling in
his arms and legs. This decreases
moment of inertia and hence
increases angular velocity. He then
performs somersaults. As the diver is
about  to touch the surface of water,
he stretches out his limbs. By so
doing, he increases his moment of
inertia, thereby reducing his angular
velocity.

4. A ballet dancer can vary her angular speed by outstretching
her arms and legs.

Slow
rotation

Fast
rotation

Fig. 3.19. Ballet dancer making use of law of conservation of angular momentum

Spring board

Water

Fig. 3.18. Diver performing somersaults



Physics—XI96

A ballet dancer [Fig. 3.19] makes use of the law of conservation of
angular momentum to vary her angular speed. Suppose a ballet dancer
is rotating with her legs and arms stretched outwards. When she
suddenly folds her arms and brings the stretched leg close to the other
leg, her angular velocity increases on account of decrease in moment of
inertia [Fig. 3.19].

5. A man carrying heavy weights in his hands and standing on
a rotating table can vary the speed of the table.

Fast
rotation

Slow
rotation

Fig. 3.20
Suppose a man is standing on a rotating table with his arms

outstretched. Suppose he is holding heavy weights in his hands. When
the man suddenly folds his arms, his angular velocity increases on
account of the decrease in moment of inertia [Fig. 3.20].

I. Unless an external torque is applied to it, a body in a state of
rest or uniform rotational motion about its fixed axis of rotation remains
unchanged.

II. The rate of change of angular momentum of a body about a
fixed axis of rotation is directly proportional to the torque applied and
takes place in the direction of the torque.

III. When a torque is applied by one body on another, an equal
and opposite torque is applied by the latter on the former about the
same axis of rotation.
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Do the review exercises in your notebook.

1. A ball of mass M falls from a height h on a floor for which the
coefficient of restitution is e. The height attained by the ball after
two rebounds is
(a) e2 h (b) eh2

(c) e4 h (d) h/e4.
2. Consider the following two statements:

A. Linear momentum of a system of particle is zero. Then
B. Kinetic energy of a system of particles is zero. Then
(a) A does not imply B but B implies A.
(b) A implies B and B implies A.
(c) A does not imply B and B does not imply A.
(d) A implies B but B does not imply A.

3. A spring of spring constant 5 × 103 N m–1 is stretched initially by
5 cm from the unstretched position. Then the work required to
stretch it further by another 5 cm is
(a) 25.00 N m (b) 6.25 N m
(c) 12.50 N m (d) 18.75 N m.

4. A neutron makes a head-on elastic collision with a stationary
deuteron. The fractional energy loss of the neutron in the collision
is
(a) 16/81 (b) 8/9
(c) 8/27 (d) 2/3.

5. A stationary particle explodes into two particles of masses m1 and
m2 which move in opposite directions with velocities v1 and v2 . The
ratio of their kinetic energies E1/E2 is
(a) m2/m1 (b) m1/m2

(c) 1 (d) m1v2/m2v1.
6. A body of mass m has a kinetic energy equal to one-fourth kinetic

energy of another body of mass m/4. If the speed of the heavier
body is increased by 4 m s–1, its new kinetic energy equals the
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original kinetic energy of the lighter body. The original speed of
the heavier body in m s–1 is
(a) 8 (b) 6
(c) 4 (d) 2.

7. A toy gun has a spring of force constant k. After charging the
spring by compressing it through a distance of x, the toy releases
a shot of mass m vertically upwards. Then the shot will travel a
vertical height of

(a) 2
2mg
kx (b)

2kx
mg

(c)
kx
mg (d)

2

2
kx
mg .

8. A particle moves in a straight line with retardation proportional to
its displacement. Its loss of kinetic energy for any displacement x
is proportional to
(a) x2 (b) ex

(c) x (d) loge x.
9. An automobile travelling with a speed of 60 km h–1, can brake to

stop within a distance of 20 m. If the car is going twice as fast, i.e.,
at 120 km h–1, the stopping distance will be
(a) 20 m (b) 40 m
(c) 60 m (d) 80 m.

10. A uniform chain of length 2 m is kept on a table such that a length
of 60 cm hangs freely from the edge of the table. The total mass of
the chain is 4 kg. What is the work done in pulling the entire
chain on the table ?
(a) 7.2 J (b) 3.6 J
(c) 120 J (d) 1200 J.

1. A body of mass 3 kg is under a constant force which causes a

displacement s (in m) in it, given by the relation s = 
1
3 t2, where t

is in second. Work done by the force in 2 s is __________ .
2. A 2 kg block slides on a horizontal floor with a speed of 4 m s–1. It

strikes a uncompressed spring, and compresses it till the block is
motionless. The kinetic friction force is 15 N and spring constant
is 10,000 N m–1. The spring compresses by __________ .
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3. A spherical ball of mass 20 kg is stationary at the top of a hill of
height 100 m. It rolls down a smooth surface to the ground, then
climbs up another hill of height 30 m and finally rolls down to a
horizontal base at a height of 20 m above the ground. The velocity
attained by the ball is __________ .

4. A bread gives a boy of mass 40 kg an energy of 21 kJ. If the efficiency
is 28%, then the height which can be climbed by him using this
energy is nearly __________ .

5. A windmill converts wind energy into electrical energy. If v is the
wind speed, electrical power output is proportional to __________ .

1. A rough inclined plane is placed on a cart moving with a constant
velocity u on horizontal ground. A block of mass M rests on the
incline. Is any work done by force of friction between the block
and incline? Is there then a dissipation of energy?

2. Why is electrical power required at all when the elevator is
descending? Why should there be a limit on the number of
passengers in this case?

3. A body is being raised to a height h from the surface of earth.
What is the sign of work done by
(a) applied force
(b) gravitational force?

4. Calculate the work done by a car against gravity in moving along a
straight horizontal road. The mass of the car is 400 kg and the
distance moved is 2 m.

5. A body falls towards Earth in air. Will its total mechanical energy
be conserved during the fall? Justify.

1. The potential energy of two atoms separated by a distance x is

given by U =  – 6
A
x  where A is a positive constant. Find the force

exerted by one atom on another atom.
2. A ball, dropped from a height of 8 m, hits the ground and bounces

back to a height of 6 m only. Calculate the fractional loss in kinetic
energy.

3. A particle of moving in a circle with centripetal force – 2
K
r

. What is

the total energy associated?
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4. A particle of mass m strikes on ground with angle of incidence 45°.
If coefficient of restitution e = 1/ 2 , find the velocity of reflection
and angle of reflection?

5. A body of mass m falls from a height h and collides with another
body of same mass. After collision, the two bodies combine and
move through distance d till they come to rest. Find the work
done against the resistive force.

1. A rubber ball of mass 50 g falls from a height of 1 m and rebounds
to a height of 50 cm. Calculate the impulse and the average force
between the ball and the ground, if the time during which they
are in contact was 0.1 second.

2. Two 22.7 kg ice sleds A and B are placed a short distance apart,
one directly behind the other, as shown in figure below. A 3.63 kg
cat, standing on one sled, jumps across to the other and
immediately back to the first. Both jumps are made at a speed
of 3.05 m s–1 relative to the ice. Find the final speeds of the two
sleds.

3. A bullet of mass 7 g is fired into a block of metal weighing 7 kg.
The block is free to move. After the impact, the velocity of the
bullet and the block is 0.7 m s–1. What is the initial velocity of
the bullet ?

4. A block of mass m moving at speed v collides with
another block of mass 2 m at rest. The lighter block
comes to rest after the collision. Find the
coefficient of restitution.

5. Two bodies of masses m1 and m2 (< m1) are
connected to the ends of a massless cord and
allowed to move as shown. The pulley is both
massless and frictionless. Determine the
acceleration of the centre of mass.

m1
m2

aa




